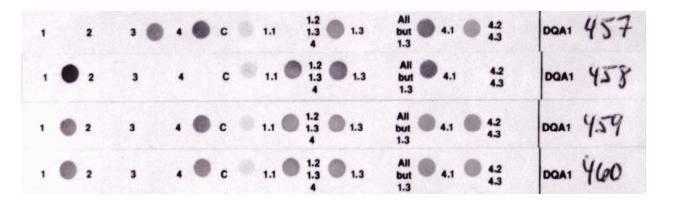
Considerations Regarding Forensic DNA Typing and Future Directions

Professor Bruce Budowle

Executive Director of the Institute of Applied Genetics Department of Forensic and Investigative Genetics University of North Texas Health Science Center Fort Worth, Texas 76107

Technology Works

- Generally speaking this statement is true
- Mitigating Factors
 - Pushing the envelope
 - Uncertainty/Risk
 - Bias
 - Reliability
 - Validation
- Humans are involved!!!


Methodology Forensic Concerns

- Bad method done poorly
- Bad method done well
- Good method done poorly
- Good method done well, but not accepted in legal system

Historical Example of Method Issues

- Methods can be thought to be reliable
- But sufficient validation studies must be carried out
- Results of validation studies should not be ignored
- HLA-DQA1 and Polymarker

HLA-DQA1 and PM Loci Dot Blots

Control Victim K Suspect K Evidence Q

s	LDLR A 🛞 B	GYPA	HBGG A B 🛞 C	D758	A B C B	461
s	LDLR	GYPA	HBGG A B C	D758	GC A B C	462
s		дура А 🌒 В	HBGG A B C	D758 A B	GC A B C 🍘	463
s 🌍	LDLR	дура А 🛞 В 🌑	MBGG A B C	D756	а в 🌒 с 🌑	464

Control Victim K Suspect K Evidence Q

Errors in Typing Results

- Thermocycler temperature performance affected reliability
 - Four more GC residues in allele 1 than alleles 4,3, and 2 of DQA1
 - If the denaturing temp is not high enough allele 1 may not denature
 - Causing allele dropout
- Note: manufacturer laboratory scientists were not using outer wells of thermocycler
- Real cases with discrepancies inconsistent with data

Comey, C.T., Jung, J.M., and Budowle, B.: Use of formamide to improve PCR amplification of HLA-DQA1 sequences. BioTechniques 10(1):60-61, 1991

Errors in Typing Results

• Amplicon denatured for hybridization to immobilized probes

- Selective loss of GC B and HLA DQA1 4.1 probe signals

- Primers can re-anneal and extend if the samples is not immediately hybridized
- Blocks the allele variant for hybridization
- Causing allele dropout
- Real cases with discordant DQA1/PM and STR results

Grow M, Phillips V, Reynolds R.: Post-amplification primer extension of heat-denatured AmpliType PCR products: effects on typing results. J Forensic Sci. 41(3):497-502, 1996

Validation

- Requisite!
- Without proper validation the limits are not defined
- Performing validation and ignoring results is unacceptable

Human Failings

- Mistakes will be made by humans with any system
- But some human failings are inexcusable
- FBI misidentification of latent print in Madrid bombing case
- SE33 variants
- One report describes electrophoretic SE33 anomalies
- Another report does not observe it
 - Sampling
 - Not aware and thus looking for it
 - Poorly calibrated instrument

Forensic Science International: Genetics 5 (2011) 269–275

Concordance and population studies along with stutter and peak height ratio analysis for the PowerPlex $^{\textcircled{R}}$ ESX 17 and ESI 17 Systems

Carolyn R. Hill^{a,*}, David L. Duewer^a, Margaret C. Kline^a, Cynthia J. Sprecher^b, Robert S. McLaren^b, Dawn R. Rabbach^b, Benjamin E. Krenke^b, Martin G. Ensenberger^b, Patricia M. Fulmer^b, Douglas R. Storts^b, John M. Butler^a

^aNational Institute of Standards and Technology. Chemical Science and Technology Laboratory. Gaithersburg, MD 20899-8312. USA

Table 4

Discordant results for samples in this study. Null or different alleles due to an insertion or deletion outside of the primer binding site are in bold and underlined.

Locus	PP-ESX17	PP-ESI17	Identifiler	PP16	MiniFiler	NIST-NC01	NIST-23plex	PP-SE33
D1S1656	15.3 , 15.3	14, 15.3	a	а	a	а	a	а
D3S1358	14, 17	14, 17	14, <u>14</u>	14, 17	а	а	а	а
D16S539	12 , 12	12, 13	12, 13	12, 13	12, 13	а	a	а
D18S51	13, 15	13, 15	<u>15</u> , 15	13, 15	13, 15	а	a	а
D19S433	13, 14	13, 14	14 , 14	а	а	a	а	а
D19S433	13, 14.2	13, 14.2	14.2 , 14.2	а	а	а	а	а
D22S1045 ^b	<u>17</u> , 17	15, 17	a	а	а	15, 17	15, 17	а
D22S1045 ^b	<u>17</u> , 17	15, 17	а	а	a	15,17	15,17	a
D22S1045 ^b	<u>17</u> , 17	15, 17	a	a	a	15,17	15,17	а
DZZ51045	16 , 16	15, 16	a	а	a	15,16	15,10	a
SE33	26.2, 27.2	26.2, 27.2	a	а	a	a	а	26.2, 26.2
SE33	20, 28.3	20, 28.3	a	а	а	a	а	20, <u>29.2</u>
SE33	24.2, 28.2	24.2, 28.2	a	а	а	а	а	28.2, 28.2
SE33	21.2, 26.2	21.2, 26.2	a	а	а	а	a	21.2, 21.2
SE33	24.2, 25.2	24.2, 25.2	а	a	а	а	a	24.2, 24 .3
SE33	19, <u>19</u>	19, 25.2	a	а	а	a	a	19, 25.2

a-The compared kit does not provide results for this locus.

b-After inclusion of an additional D22S1045 forward primer to correct the null allele, these samples are not discordant in the commercial PP-ESX17 kit.

Contents lists available at ScienceDirect

Forensic Science International: Genetics

journal homepage: www.elsevier.com/locate/fsig

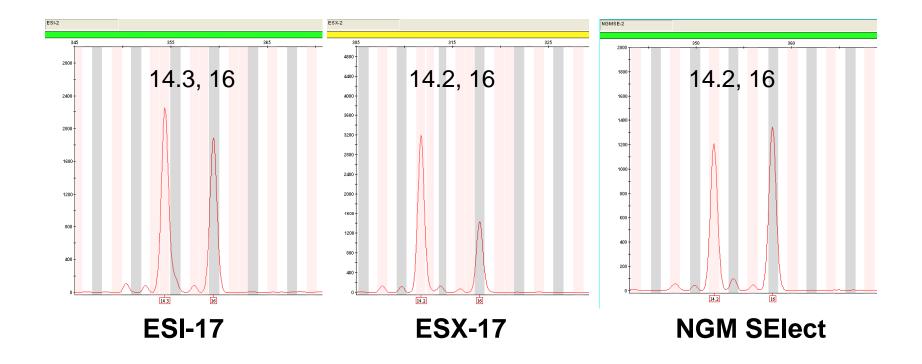
Identification and secondary structure analysis of a region affecting electrophoretic mobility of the STR locus SE33

Dennis Y. Wang, Robert L. Green, Robert E. Lagacé, Nicola J. Oldroyd, Lori K. Hennessy, Julio J. Mulero*

Life Technologies, 850 Lincoln Centre Drive, Foster City, CA 94404, United States

Table 1

Discordant SE33 samples from the population study. The discordant alleles due to a mobility shift or allele dropout when compared to the SEfiler PlusTM kit are shown in bold and underlined. The kits used in the study were SEfiler PlusTM, NGM SElectTM, SE33 experimental primers, and the Promega ESX-17 and ESI-17 kits. Electropherograms for samples IBB297 and IBB298 are shown in Figs. 2 and 3 respectively. AA, African American; C, Caucasian.


	Ethnicity (sex)	Sample ID	SEfP	NGM SElect	Experimental	ESX-17	ESI-17	Genetic Variation
(1)	AA (Male)	IBB039	17, 20	17, 20	17.1 , 20	17, 20	17.1, 20	81
(2)	AA (Male)	IBB052	18, 20.2	18, 20.2	18, 20.3	18, 20.2	18, 20.3	1
(3)	AA (Fem)	IBB114	18, 24.2	18, 24.2	18, 24.3	18, 24.2	18, 24.3	1
(4)	AA (Male)	IBB115	21, 22.2	21, 22.2	21, 22.3	21, 22.2	21, 22.3	1
(5)	AA (Male)	IBB121	20, 21.2	20, 21.2	20, 21.3	20, 21.2	20, 21.3	1
(6)	AA (Male)	IBB135	23.2, 28.2	23.2, 28.2	23.3, 28.2	23.2, 28.2	23.3, 28.2	1
(7)	AA (Male)	IBB160	13.2, 19	13.2, 19	13.3 , 19	13.2, 19	13.3, 19	1
(8)	AA (Fem)	IBB187	14, 21.2	14, 21.2	14, 21.3	14, 21.2	14, 21.3	1
(9)	AA (Fem)	IBB196	17, 21.2	17, 21.2	17, 21.3	17, 21.2	17, 21.3	1
(10)	AA (Male)	IBB198	15, 20.2	15, 20.2	15, 20.3	15, 20.2	15, 20.3	1
(11)	AA (Male)	IBB233	17, 20.2	17, 20.2	17, 20.3	17, 20.2	17, 20.3	1
(12)	AA (Fem)	IBB253	20.2, 21	20.2, 21	20.3, 21	20.2, 21	20.3, 21	1
(13)	AA (Fem)	IBB262	13.2, 27.2	13.2, 27.2	13.3, 27.2	13.2, 27.2	13.3, 27.2	1
(14)	AA (Male)	IBB297	20.2, 21	20.2, 21	20.3 , 21	20.2, 21	20.3 , 21	1
(15)	AA (Male)	IBB658	17, 18.2	17, 18.2	17, 18.3	17, 18.2	17, 18.3	1
(16)	AA (Male)	IBB153	19, 25.2	19, 25.2	19, 25.3	19, <u>19</u>	19, 25.3	2
(17)	AA (Male)	IBB298	16, 18	16, 18	16, 18.1	16, 16	16, <u>18.1</u>	2 2
(18)	C (Fem)	IBB509	26.2, 30.2	26.2, 30.2	26.3, 30.2	30.2, 30.2	26.3, 30.2	2
(19)	AA (Male)	IBB145	20, 22.2	20, 22.2	20.1, 22.2	22.2, 22.2	20.1, 22.2	3

1) G/A₁₈ SNP in experimental amplicon sequence (Fig. 4B).

2) C/T_{10} SNP in experimental amplicon sequence (Fig. 4B).

3) G/A₁₁ SNP in experimental amplicon sequence (Fig. 4B).

SE33 Type Discordance

The ESI-17 kit results yielded a discordant SE33-14.3 allele

Variants observed for STR locus SE33: A concordance study

Carey Davis^a, Jianye Ge^a, Jonathan King^a, Naseem Malik^b, Volker Weirich^c, Arthur J. Eisenberg^a, Bruce Budowle^{a,*}

^a Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, Department of Forensic and Investigative Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, United States

^b Universität Bern, Forensische Molekularbiologie, Institut für Rechtsmedizin, Bern, Switzerland

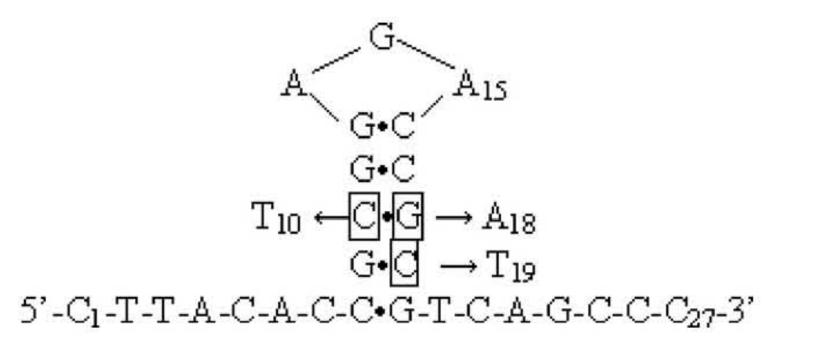

^c Landeskriminalamt Mecklenburg-Vorpommern, Rampe, Germany

Table 1

Discordant SE33 alleles. The discordant alleles are in bold and underlined. The kits used in this study were NGM SElectTM, ESX 17, and ESI 17. African ancestry (A); Caucasian ancestry (C) and Unknown ancestry (U).

Sample	Ethnicity	Sex	ESI-17	ESX-17	NGM SElect	SNP
1	A	Male	18, <u>19.3</u>	N/A	18, 19.2	G/A ₁₈
2	Α	Male	14.3 , 18	14.2, 18	14.2, 18	G/A ₁₈
3	С	Male	27.3 , 30.2	27.2, 30.2	27.2, 30.2	G/A ₁₈
4	С	Male	18.1 , 23.2	18, 23.2	18, 23.2	C/T ₁₉
5	Α	Male	18, 22.3	18, 22.2	18, 22.2	G/A ₁₈
6	Α	Male	17, 23.3	17, 23.2	17, 23.2	G/A ₁₈
7	Α	Male	22.3 , 26.2	22.2, 26.2	22.2, 26.2	G/A ₁₈
8	Α	Male	13.3 , 20	13.2, 20	13.2, 20	G/A ₁₈
9	Α	Male	14.3 , 17	14.2, 17	14.2, 17	G/A ₁₈
10	Α	Male	12.3 , 21	12.2, 21	12.2, 21	G/A ₁₈
11	С	Male	14.1 , 16	14, 16	14, 16	C/T ₁₀
12	Α	Male	18, 21.3	18, 21.2	18, 21.2	N/A
13	U	Male	18.1, 29.2	18, 29.2	18, 29.2	N/A
14	Α	Male	14.3 , 29	14.2, 29	14.2, 29	N/A
15	А	Male	19.3 , 20	19.2, 20	19.2, 20	N/A
16	Α	Male	18, 23.3	18, 23.2	18, 23.2	N/A
17	С	Male	16, <u>16</u>	16, 19	16, 19	None

Sequencing Results Show Shift Due to SNP (not indel)

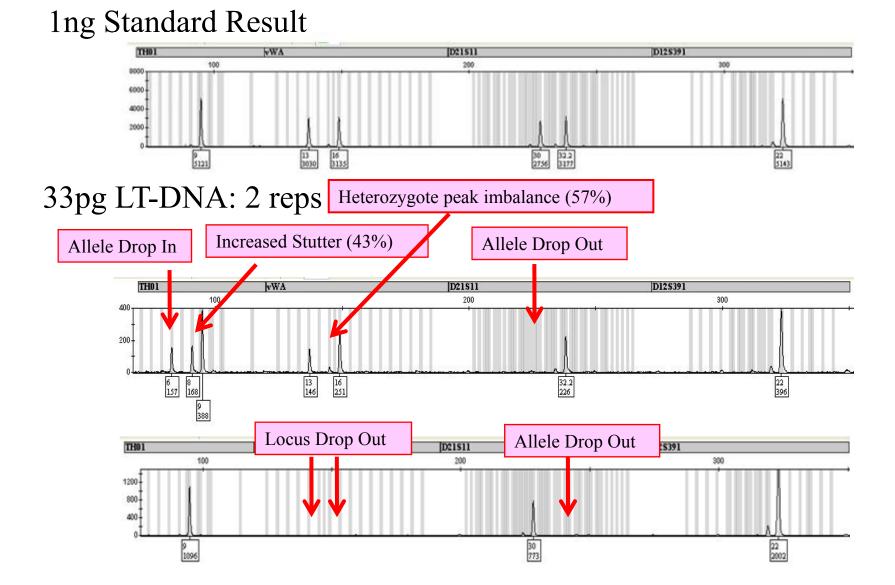


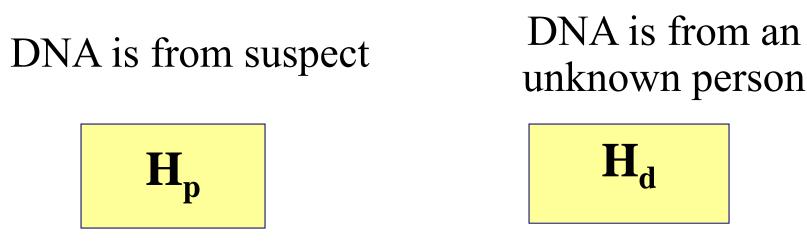
Fig. 2. The new SNP C/T₁₉. The most stable secondary structure for the sequence encompassing the polymorphic region (using MFOLD computer model). The sequence is annotated with the variant SNPs found in the polymorphic region. The free energy value for the new variant is $\Delta G = -2.44$ kcal/mol as compared to the wild type $\Delta G = -5.79$ kcal/mol.


Initial Low-Copy Number (LCN) Work

- Early work on "touch samples":
 - van Oorschot, R. A. and Jones, M. K. (1997) *Nature*.
 387(6635): 767
 - Findlay, I., et al (1997) Nature. 389(6651): 555-556
- Application to routine <u>limited quantity</u> casework:
 - Gill, P., et al (2000) Forensic Sci. Int. 112(1): 17-40
 - Whitaker, J. P., et al (2001) *Forensic Sci. Int.* 123(2-3): 215-223
 - Gill, P. (2001) Croatian Medical Journal 42(3): 229-32
- Note that Touch Samples do not necessarily equate to LCN samples

Comparison of STR Results with Different Amounts of DNA

Risk

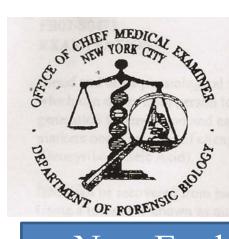

Risk

- A scientist might say
 - "I am willing to take the risk..."
- But who is really at risk?
 - The scientist?
 - Suspects, Victims, Families, Society??

Bias in Law

- Asymmetry of the law a thousand guilty go free vs one wrongly accused innocent person!
- What about the victim?

Forensic Science & Bias


- Database searches can tolerate false positives more so than false negatives
 - Can resolve with follow up
 - Investigative leads
 - Incumbent on scientist to convey uncertainty
- Casework tolerates false exclusions more so than false inclusions
 - Bias in law

Forensic Science & Bias

- A DNA threshold is a biased tool!
 - -Because we are concerned about false inclusions/associations
- Set thresholds sufficiently high to greatly reduce the chance of false inclusions
 - -Data below threshold become <u>inconclusive</u>
 - -and importantly still can be used for <u>exculpatory</u> purposes

Forensic Science & Bias

- Driven by the degree of risk that should be taken
- What if the scientists do not convey the risk or uncertainty?
- Is that a serious concern or should we turn a blind eye?

OFFICE OF CHIEF MEDICAL EXAMINER Charles S. Hirsch, M.D., Chief Medical Examiner

DEPARTMENT OF FORENSIC BIOLOGY Mechthild Prinz, Ph.D., Director Howard J Baum, Ph D., Deputy Director 421E 26th St., New York, NY 10016 Tel: 212.323.1200 · Fax: 212.323.1590 · TTY: 212.447.2086 · E-mail: dnalab@ocme.nyc.gov

New Evolving DNA Reporting Approach

ADDITIONAL REPORT

No statistics

For previous results, evidence received, and disposition, see report dated October 18, 2007.

SUMMARY OF RESULTS:

The suspect, **and an expect** is included as a contributor to the mixtures detected on stain 1A from seat belt "E11" and swab "ES15" from "steering wheel-right", and he cannot be excluded as a contributor to the mixtures detected on swabs "ES3" from "gear shift" and "ES6" from "brake pedal", from the report dated October 19, 2007 from case:

report dates

July 18, 2007, October 17, 2007, and October 19, 2007

Cannot Exclude Interpretation

Most of the DNA alleles seen in the DNA profile of XXX are seen in the mixture of DNA found on the sample listed below. Since the absence of the alleles can be explained he cannot be excluded as a possible contributor of the mixture.

Cannot Exclude Interpretation

- No statistics are provided with this statement
- So no risk or uncertainty is conveyed
- We will visit later the bias and allele drop out statistical issues with such interpretations

Relevance

- Some scientists have said
 - "Relevance is for the court to decide"
- Is it up to the court to decide?
- Or are there situations where the scientist should not absolve himself/herself from considering relevance?
- Examples such as the Knox case demonstrate that this simple statement is insufficient for addressing the role of the scientist
- Perhaps it is not so black and white

Amanda Knox Case The Knife

Selected because it looked cleaner than other knives

Does Evidence Support the Hypothesis?

- Or better posed
 - Is there an alternate hypothesis/interpretation of the findings?
- Should alternate hypotheses be considered?
- We need to develop training in this regard!

Other Tests Were Performed!

- Sample Screening
 - Identification of tissue source
 - Blood
 - Semen
 - Saliva
 - Time, labor, cost
 - DNA decision tree
 - Quality/Quantity of Body Fluid

Presumptive Test

- Sample B from the handle of the knife yielded a negative result for the presumptive tetramethyl benzidine (TMB) test.
 - Extremely sensitive
 - Blood can be diluted 100,000 -1,000,000 times.
- Knife was collected only 12 days after the crime
- Hemoglobin is fairly stable molecule
- Peculiar and difficult to reconcile that the TMB was negative

Alternate Hypothesis

- Extremely unlikely to have been able to wash away all traces of hemoglobin and preferentially leave behind solely DNA
- General plausible explanations for the presence of DNA on items
 - Contamination
 - Primary and secondary transfer
 - A person's DNA will be found on his/her items in his/her home, place of work, and other places
 - DNA also can be picked up by others and passed on to other items
- Evidence does not support that DNA on knife was from blood

What should have been done?

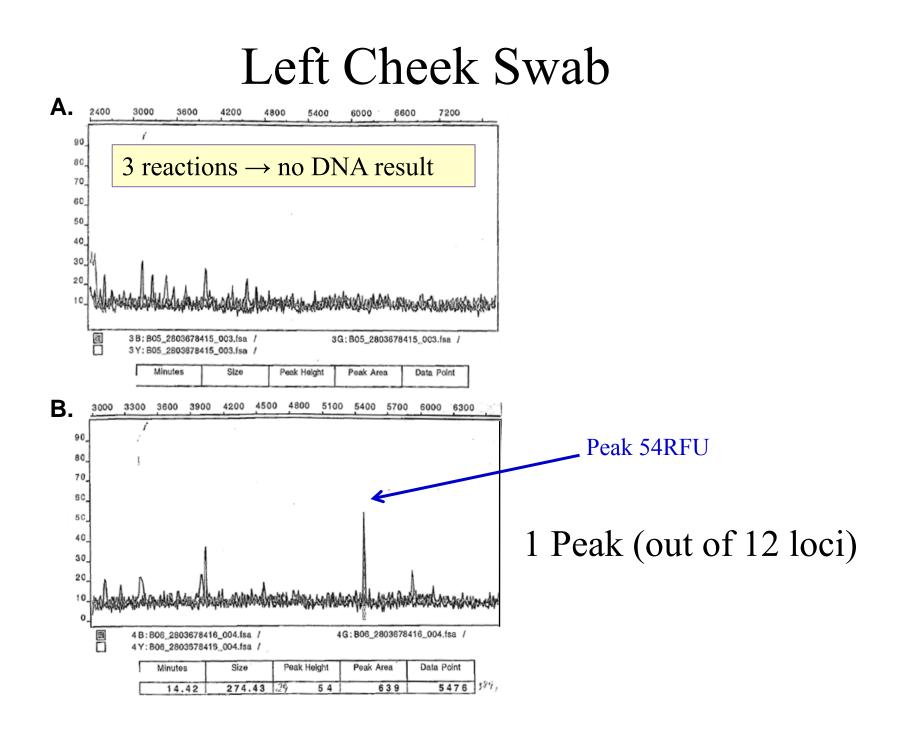
- Consider relevance!
 - Background DNA
 - Collect other knives and utensils in drawer
 - Test for presence of DNA
- Incumbent on scientists to consider alternate hypotheses, especially if they are probable
- Understand consequences of low level DNA typing
- Education

Not Unique to This Case

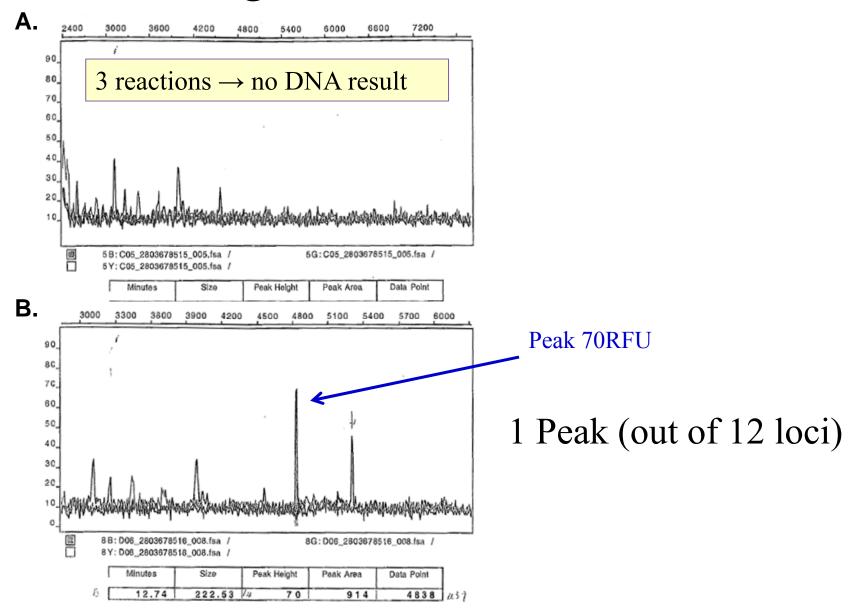
A Case Example

LEAD STORY: King walks free after murder case dropped

Deceased woman -


- Prosecution hypothesis: offender is male and punched her in the face in committing the offence
- Swabs taken from her face, both cheeks
- Y STR (male) analysis of left and right cheek swabs
- There were two men of interest, A and B at different times

Yesterday in the High Court in Napier, Justice Denis Clifford granted a defence application led by cocounsel Peter Williams, QC, to dismiss the charge CLEARED: Zion King is relieved to be a free man again


after Crown prosecutor Russell Collins conceded the case against King was not strong enough.

Mr Collins said it was "unsafe" for the Crown to offer its evidence as a reliable basis for a jury to reach a verdict.

From Hawkes Bay Today, 9 February 2010

Right Cheek Swab

Case Results

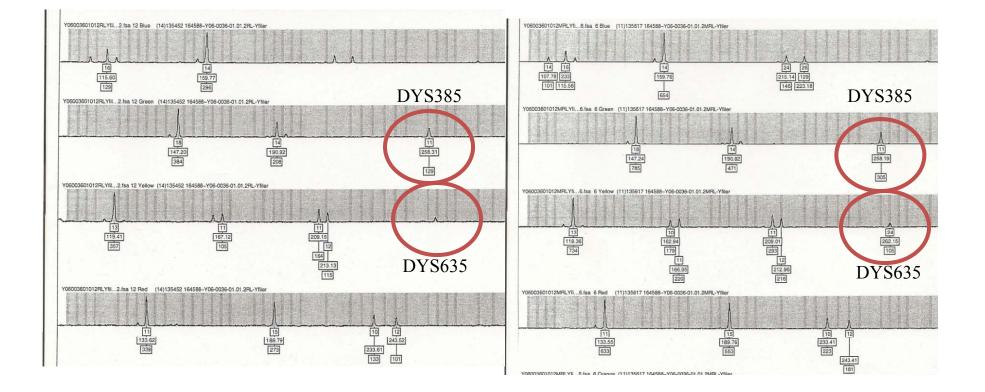
- Two total peaks, observed at two different loci, were seen in *only one* of four replicates
 - Consensus profile approach requires alleles to be replicated
 - These peaks should not have been reported as alleles
 - These peaks should not have been used for inclusionary or exclusionary purpose
- No peaks at the other loci were detected
- Peaks had very low heights of 54rfu and 70rfu (threshold values range from 50 250rfu)
- Violates "Published" Rule and yet was reported!

Bias

- A scientist might say
 - "I am not biased, I am objective and trained to be so"
- However, we are all biased
- Then the scientist says
 - "There is no bias because I detected all the alleles before looking at the reference samples"
- Is that a correct assessment?

Recall Cannot Exclude...

 Most of the DNA alleles seen in the DNA profile of XXX are seen in the mixture of DNA found on the sample listed below. Since the absence of the alleles can be explained, he cannot be excluded as a possible contributor of the mixture.


Bias Example

Loci	D21S11	FGA	TH01	vWA	D8S1179	D18S51	D3S1358	D19S433	D16S539	D2S1338
E	27,29,30. 2,32.2	19,22, 24,26	6,7, 9.3	14,17, 19	10,12, 14,16	8,10, 11,12	14,15, 17,18	12,14, 16	9,11, 12	17,20, 23,25
S1	29,30.2	19,22	9.3	17,19	<u>13,15</u>	10	<u>15,16</u>	14,16	9,11	20,25
E	27,29,30. 2.32 2	19,22, 24,26	6,7, 9.3	14,17, 19	10,12, 14,16	8,10, 11,12	14,15, 17,18	12,14, 16	9,11, 12	17,20, 23,25
S 2	28,31.2	19,22	9.3	<u>15,18</u>	12,14	10	15,17	14,16	9,11	20,25
E	27,29,30. 2,32.2	19,22, 24,26	6,7, 9.3	14,17, 19	10,12, 14,16	8,10, 11,12	14,15, 17,18	12,14, 16	9,11, 12	17,20, 23,25
S 3	29,30.2	<u>23,27</u>	9.3	17,19	12,14	10	15,17	<u>13,15</u>	9,11	20,25

• These 3 suspects are all included but the loci with potential drop-out change

• "Sliding window drop-out"

Bias - LCN and Y STRs

Specimen		n #	DYS		YS3891			YS389 II	-	YS458	DYS19	1	DYS385	a/b	
		Sec.	NF	2	NR	NF	2	NR		NR	NR	_	INK		
			(14)1	6*	14	24,2	26	NR		18	14*	1	11		
		21.	17		14	26		31		18	15	7	11,18		
		200					-	1.1.1.1.1.			/				
Specimen #		DYS	\$393	DYS391	DYS	S439 I	DYS635	DYS392	2	H4 D	YS437	DY	S438	DYS44	8
		N	R	NR	N	IR	NR	NR	1	NR	MR	1	NR	NR	
		13	3*	10,11	11	,12	24	NR		11	15	1	0,12	NR	
		1	3	11	the second se	1	24	11		11	15		10	20	
l = no r	esult ()	= weak	er allele	e *= po	ssible ad	ditional a	llele(s)	resent belo	ow th	reshold					_
					8.595365977	0.000.00000000			/	2.2.21.02.015.0					
DYS456	DYS3891	DYS390	DYS389 I	DYS458	DYS19	DYS385a/b	DYS393	DYS391 DY	S439	DYS635	DYS392	H4	DYS437	DYS438	DYS
NS	14	24	NR	18	NS	NS	NS	10	11	24	NR	11	15	10	N
NS	14	24	NR	18	NS	NS	NS	10	11	24	NR	11	15	12	N
100 Co. 100	12010														
NS	14	24	NR	18	NS	NS	NS	10	12	24	NR	11	15	10	N
NS NS	14 14	24 24	NR NR	18 18	NS NS	NS NS	NS NS		12 12	24 24	NR NR	11 11	15 15	10 12	
							NS NS	10							N
NS	14	24	NR	18	NS	NS NS	NS	10 11	12	24	NR	11	15	12	N
NS NS	14 14	24 24	NR NR	18 18	NS NS	NS NS	NS NS	10 11 11	12 11	24 24	NR NR	11 11	15 15	12 10	
NS NS NS	14 14 14	24 24 24	NR NR NR	18 18 18	NS NS NS	NS NS	NS NS	10 11 11 11	12 11 11	24 24 24	NR NR NR	11 11 11	15 15 15	12 10 12	
NS NS NS NS	14 14 14 14	24 24 24 24	NR NR NR NR	18 18 18 18	NS NS NS NS	NS NS NS	NS NS NS	10 11 11 11 11	12 11 11 12	24 24 24 24 24	NR NR NR NR	11 11 11 11	15 15 15 15	12 10 12 10	
NS NS NS NS	14 14 14 14 14	24 24 24 24 24 24	NR NR NR NR	18 18 18 18 18	NS NS NS NS	NS NS NS NS	NS NS NS NS	10 11 11 11 11 11 10	12 11 11 12 12	24 24 24 24 24 24	NR NR NR NR NR	11 11 11 11 11	15 15 15 15 15	12 10 12 10 12	
NS NS NS NS NS	14 14 14 14 14 14	24 24 24 24 24 24 26	NR NR NR NR NR	18 18 18 18 18 18	NS NS NS NS NS	NS NS NS NS NS	NS NS NS NS NS	10 11 11 11 11 11 10 10	12 11 11 12 12 11	24 24 24 24 24 24 24	NR NR NR NR NR	11 11 11 11 11 11	15 15 15 15 15 15	12 10 12 10 12 12 10	
NS NS NS NS NS NS	14 14 14 14 14 14 14	24 24 24 24 24 26 26	NR NR NR NR NR NR	18 18 18 18 18 18 18 18	NS NS NS NS NS NS	NS NS NS NS NS NS	NS NS NS NS NS NS	10 11 11 11 11 10 10 10	12 11 12 12 12 11 11	24 24 24 24 24 24 24 24 24	NR NR NR NR NR NR	11 11 11 11 11 11 11	15 15 15 15 15 15 15	12 10 12 10 12 10 12	
NS NS NS NS NS NS NS	14 14 14 14 14 14 14 14	24 24 24 24 24 26 26 26	NR NR NR NR NR NR NR	18 18 18 18 18 18 18 18 18	NS NS NS NS NS NS NS	NS NS NS NS NS NS NS	NS NS NS NS NS NS NS	10 11 11 11 11 10 10 10 10	12 11 12 12 12 11 11 11	24 24 24 24 24 24 24 24 24 24	NR NR NR NR NR NR NR	11 11 11 11 11 11 11 11	15 15 15 15 15 15 15 15	12 10 12 10 12 10 12 10 12 10	
NS NS NS NS NS NS NS NS	14 14 14 14 14 14 14 14 14 14	24 24 24 24 26 26 26 26	NR NR NR NR NR NR NR NR	18 18 18 18 18 18 18 18 18 18	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	10 11 11 11 11 10 10 10 10 11	12 11 11 12 12 11 11 11 12 12	24 24 24 24 24 24 24 24 24 24 24	NR NR NR NR NR NR NR NR	11 11 11 11 11 11 11 11 11	15 15 15 15 15 15 15 15 15	12 10 12 10 12 10 12 10 12 10 12	
NS NS NS NS NS NS NS	14 14 14 14 14 14 14 14 14	24 24 24 24 26 26 26 26 26 26	NR NR NR NR NR NR NR NR	18 18 18 18 18 18 18 18 18 18 18	NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS	NS NS NS NS NS NS NS NS NS	10 11 11 11 11 10 10 10 10 10 11 11	12 11 11 12 12 11 11 12 11 12 12 11	24 24 24 24 24 24 24 24 24 24 24 24	NR NR NR NR NR NR NR NR NR	11 11 11 11 11 11 11 11 11 11	15 15 15 15 15 15 15 15 15 15	12 10 12 10 12 10 12 10 12 10 12 10	

NR = no result

NS = not searched in database

Interpretation

- Already addressed, but
- A scientist may say
 - "I have a set of defined guidelines and therefore my interpretation of results is reliable"
- What are the protocols?

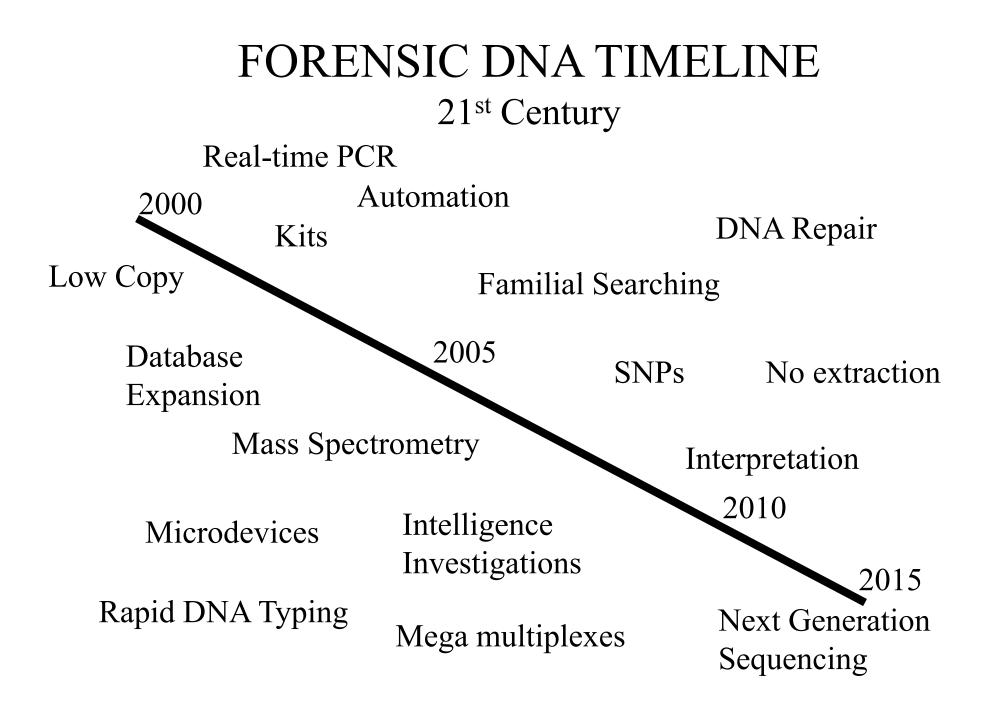
LCN Transfer Studies

- Secondary transfer studies have thus far concentrated mainly on DNA originating from the epithelial cells of hands
 - Wash hands, shake, evaluate transfer
 - Not realistic
- Saliva is a rich source of DNA that is commonly transferred during normal day-to-day activities:
 - Placing a pen in mouth while studying
 - Licking a thumb before turning a page

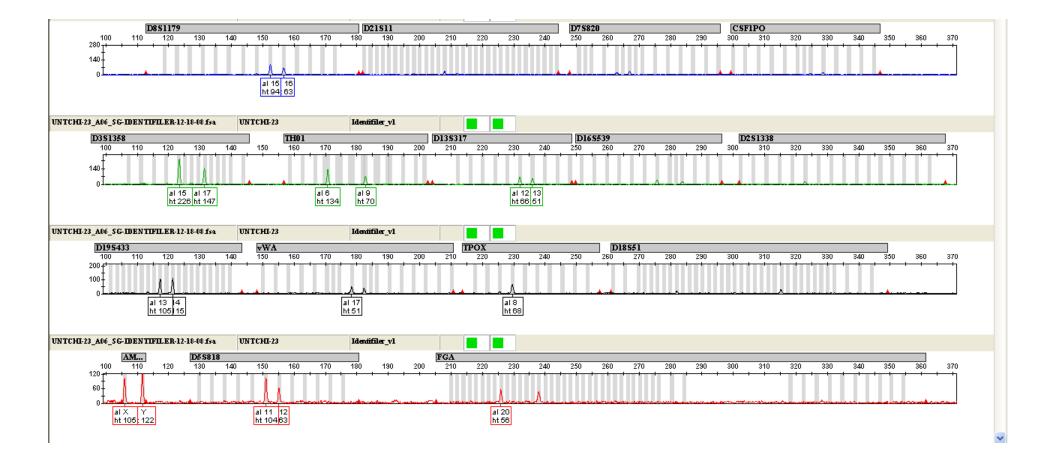
http://2.bp.blogspot.com/-WMX1y8dgW48/TVsTlwedvHI/ AAAAAAAAAMc/seMImN6OUil/s1600/man reading book.jpg

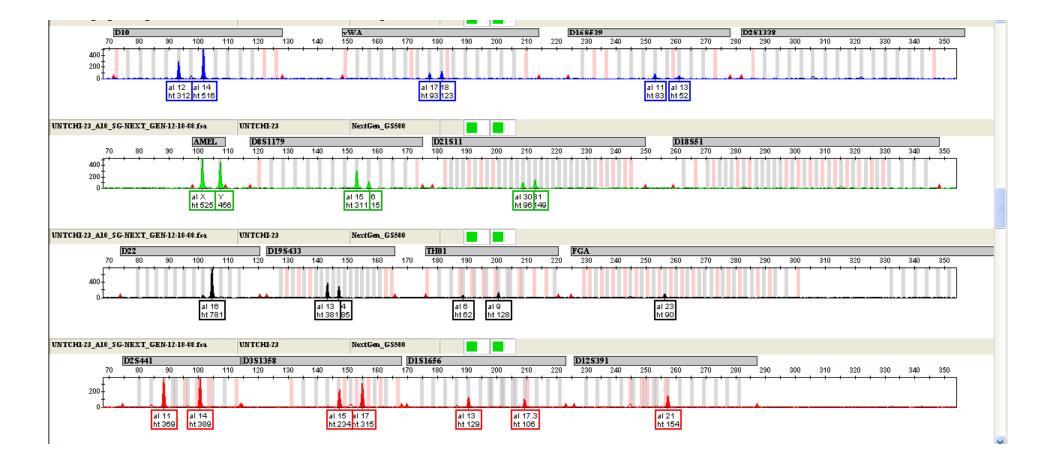
AAAAAAACDjo/fQhvP3A1EZU/s400/Sucking-on-pens.jpg

Saliva Study


- Study conducted under the hypothesis that saliva, which is rich in DNA, can be a more prevalent source of genetic material during transfer events than hand epithelial cells
 - Saliva-based DNA transfer can result in higher levels of deposited DNA than previously observed by transfer studies
 - The profile of the initial depositor can be more prevalent in secondary transfer samples than previously observed by transfer studies

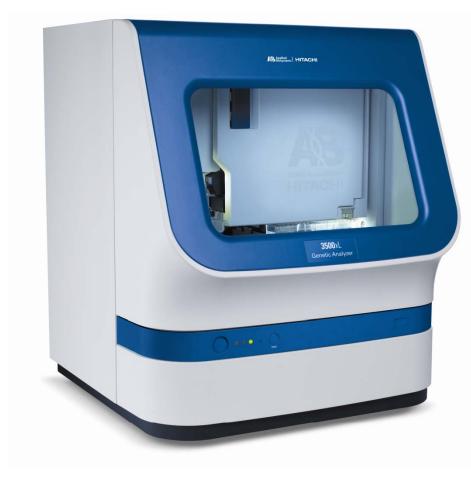
Bottom Line


- Hand washing studies conclude that last person in transfer line tends to be the dominant profile
- Good shedders and Bad shedders
- Saliva studies show that primary donor can be dominant profile
- No value to shedder status!
- Saliva traces make everyone a good shedder
- Impacts relevance!


Kits

- Standard loci
- Quality tested products
- Took burden off analyst
- Greater shared experiences

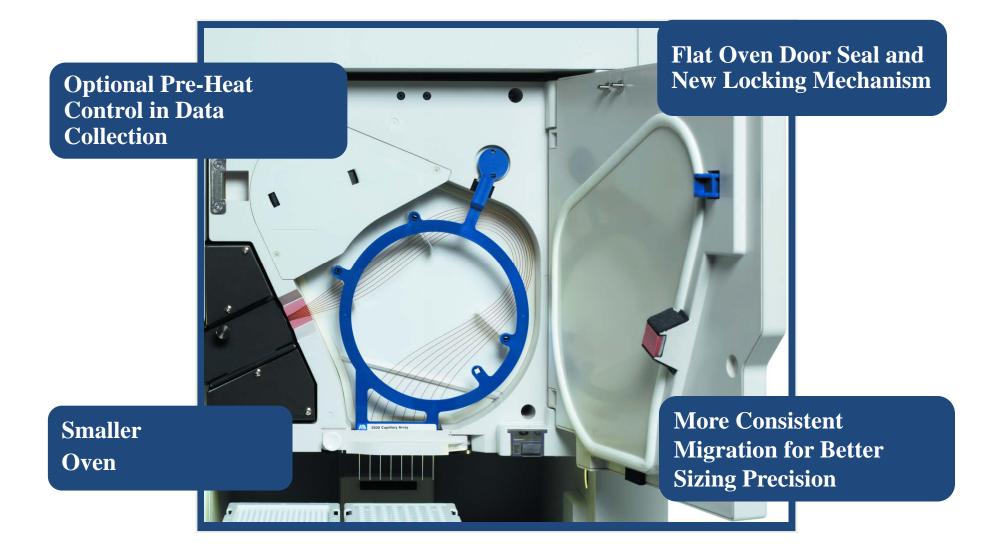
Bone Sample Amplified with Identifiler


Bone Sample Amplified with Next-Generation Multiplex STR System

Enhancing Databases

More Markers More Kits

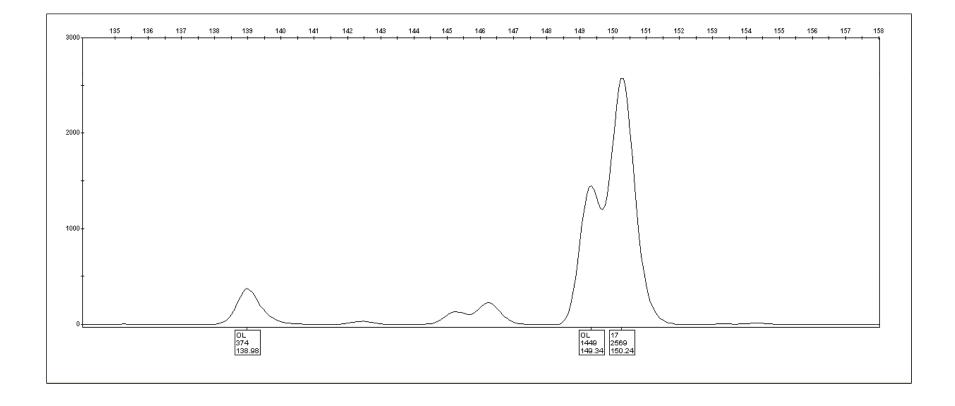
3500 Laser Design



Smaller, Single Excitation Line Solid State Laser

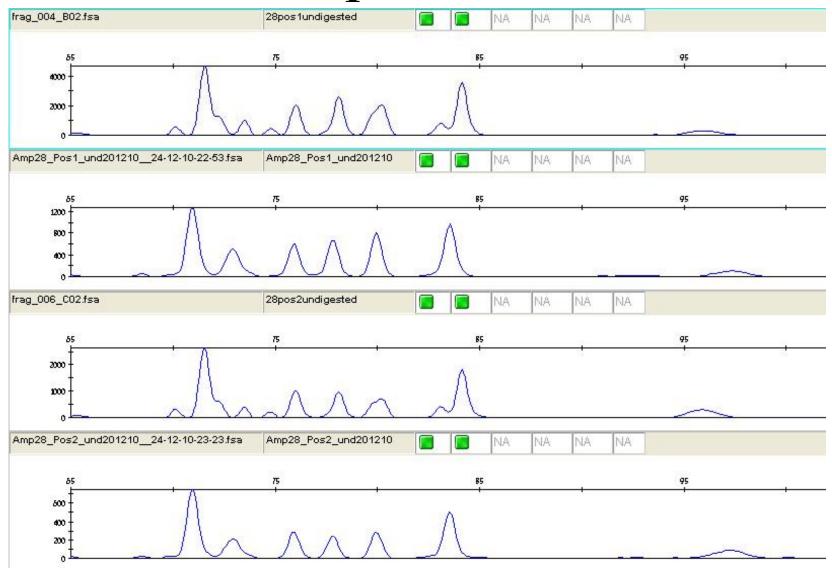
Minimal Heat Output

Standard Voltage Plug

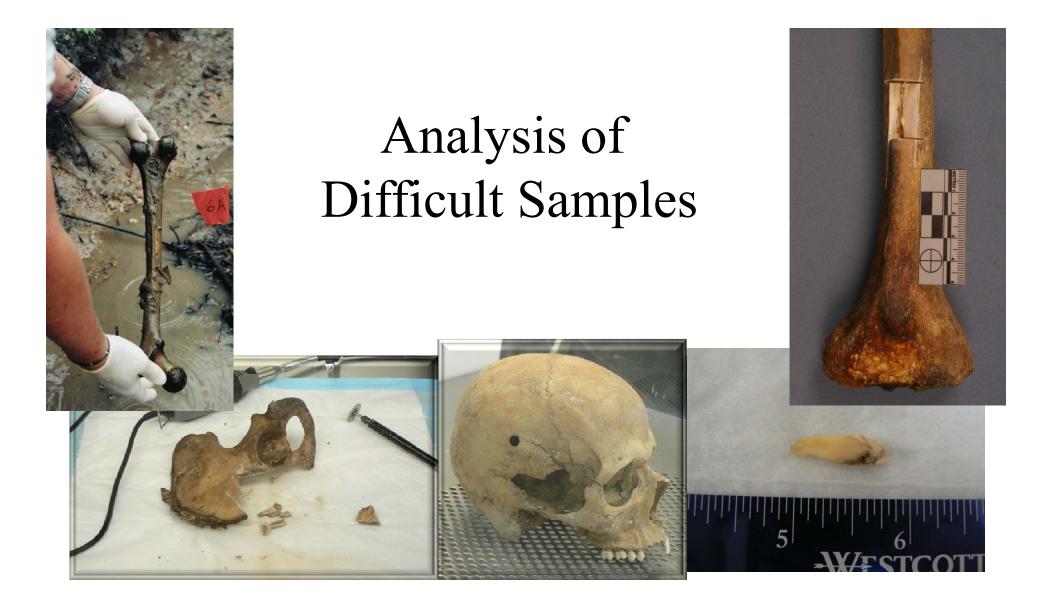

Improved Temperature Control System

McLaren et al, FSI Genetics 2008

- Split peak artifact due to post-PCR reannealing of the unlabeled, unincorporated vWA primer to the 3'-end of the tetramethylrhodamine (TMR)-labeled strand of the vWA amplicon
- Occurs in the capillary post-electrokinetic injection
- Split peak is eliminated by incorporation into the loading cocktail of a sacrificial hybridization sequence (SHS) oligonucleotide that is complementary to the vWA primer


Heating Issues "Split Peak" at vWA Locus - 3130

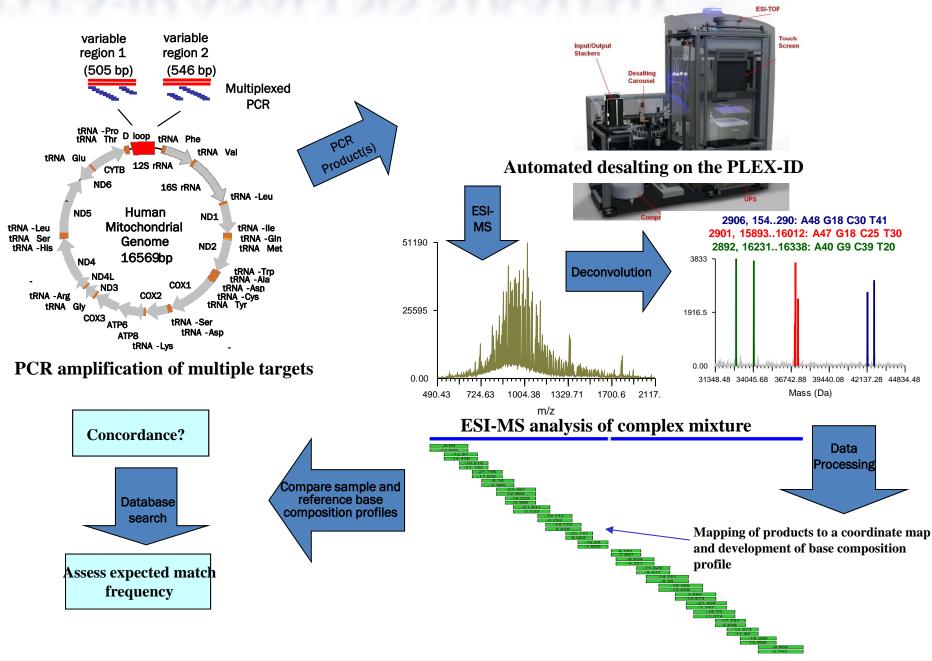
Same Sample - 310



Same Sample – 3100/3500

Rapid DNA Typing

- Rapidly identify individuals by DNA typing
- Military, forensic, homeland security, and intelligence community
- Self-contained turnkey system
- Swab in --- Result out
- 90 minutes to 2 hours
- Informed identification decisions regarding arrest, detention, or release of suspects, and eventually as it matures analyze crime scene evidence.
- NetBio, IntegenX, MicroLab Diagnostics
- Bottom line makes DNA typing an actionable tool for investigative leads



mtDNA is the most successful marker

Mass Spectrometry Advantages

- No labeling
- Mass accuracy
- multiplexing
- Quantitation Mixture interpretation
- Automation
- Cost e.g., mtDNA

PLEX-ID ANALYSIS STRATEGY

Mass Spectrometry

Base composition

Sample 1 --- A-24, G-30, C-18, T-28 Sample 2 --- A-23, G-31, C-18, T-28

A to G transition

PLEX-ID: Advances and Applications

Available online at www.sciencedirect.com

ANALYTICAL BIOCHEMISTRY

www.elsevier.com/locate/yabio

Analytical Biochemistry 344 (2005) 53-69

Base composition analysis of human mitochondrial DNA using electrospray ionization mass spectrometry: A novel tool for the identification and differentiation of humans

Thomas A. Hall^a, Bruce Budowle^b, Yun Jiang^a, Lawrence Blyn^a, Mark Eshoo^a, Kristin A. Sannes-Lowery^a, Rangarajan Sampath^a, Jared J. Drader^a, James C. Hannis^a, Patina Harrell^a, Vivek Samant^a, Neill White^a, David J. Ecker^a, Steven A. Hofstadler^{a,*} Forensic Science International: Genetics xxx (2012) xxx-xxx

Automated analysis of sequence polymorphism in STR alleles by PCR and direct electrospray ionization mass spectrometry

John V. Planz^{a,*}, Kristen A. Sannes-Lowery^b, David D. Duncan^b, Sheri Manalili^b, Bruce Budowle^a, Ranajit Chakraborty^a, Steven A. Hofstadler^b, Thomas A. Hall^b

⁸University of North Texas Health Science Center at Fort Worth, TX, USA ^bIbis Biosciences, Carlsbad, CA, USA

Research article

Validation of mass spectrometry analysis of mitochondrial DNA

Bruce Budowle^{a,b,*}, Arthur J. Eisenberg^{a,b}, Suzanne Gonzalez^{a,b}, John V. Planz^{a,b}, Kristin A. Sannes-Lowery^c, Thomas A. Hall^c, Jessica E. Paulsen^c, Steven A. Hofstadler^c

^a Department of Forensic and Investigative Genetics, University of North Texas Health Science Center, Ft Worth, TX 76107, USA ^b nstitute of Investigative Genetics, University of North Texas Health Science Center, Ft Worth, TX 76107, USA ^c fibs Biosciences, Inc., a wholly-owned subsidiary of Abott Molecular, Cartisbad, CA 92008, USA

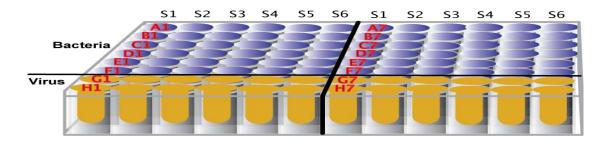
Base Composition Profiling of Human Mitochondrial DNA Using Polymerase Chain Reaction and Direct Automated Electrospray Ionization Mass Spectrometry

Thomas A. Hall,[†] Kristin A. Sannes-Lowery,[†] Leslie D. McCurdy,[‡] Constance Fisher,[‡] Theodore Anderson,[§] Almira Henthorne,[†] Lora Gioeni,[‡] Bruce Budowle,["] and Steven A. Hofstadler^{*,†}

Ibis Biosciences, subsidiary of Abbott Molecular, Inc., Carlsbad, California 92008, Federal Bureau of Investigation, Quantico, Virginia 22135, Armed Forces DNA Identification Laboratory, Rockville, Maryland 20850, and Department of Forensic and Investigative Genetics, Institute of Investigative Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107 Forensic Science International: Genetics Supplement Series 2 (2009) 524-526

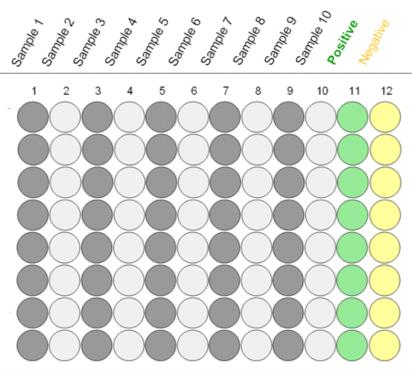
Research article

Analysis of DNA forensic markers using high throughput mass spectrometry


Steven A. Hofstadler^{a,*}, Thomas A. Hall^a, Kristin A. Sannes-Lowery^a, Sheri Manalili^a, Jessica E. Paulsen^a, Leslie D. McCurdy^b, Lora Gioeni^b, Thuy Penella^b, Arthur J. Eisenberg^{c,d}, John V. Planz^{c,d}, Bruce Budowle^{c,d}

*Hist linesiness the .4. Sublishing of Abbert Molecular Inc., IEEI Ratherfind Road, Caribbad, CA 920008, USA "Redent Diversal privategiation, Quartization, V4.2213: USA "Department of Forensic and Novestgative Caretics, University of North Treas Health Science Carete, Fort Worth, DX 76107, USA "Busiture of Investigative Caretics, University of North Thema Health Science Carete, Fort Worth, DX 76107, USA

PLEX-ID STR CODIS CORE LOCI V2.0 ASSAY FORMAT


		Sample Lane s1	Sample Lane s2	Sample Lane s3	Sample Lane s4	Sample Lane s5	Sample Lane s6	Sample Lane s7	Sample Lane s8	Sample Lane s9	Sample Lane s10	Negative	Positive
		1	2	3	4	5	6	7	8	9	10	11	12
AMEL D8S1179	A	3895 3886	3895 3886	3895 3886									
D13S317 D5S818	В	4755 4862	4755 4862	4755 4862									
D3S1358 D7S820	c	3883 5559	3883 5559	3883 5559	3883	3883 5559	3883 5559	3883 5559	3883 5559	3883 5559	3883 5559	3883 5559	3883 5559
TPOX vWA	D	3893 1185	3893 1185	3893 1185									
CSF1PO D16S539 THO1	E	4863 5690 3892	4863 5690 3892	4863 5690 3892									
D18551	F	1205	1205	1205	1205	1205	1205	1205	1205	1205	1205	1205	1205
D21511	G	5679	5679	5679	5679	5679	5679	5679	5679	5679	5679	5679	5679
FGA	н	4976	4976	4976	4976	4976	4976	4976	4976	4976	4976	4976	4976

Biodefense Kit

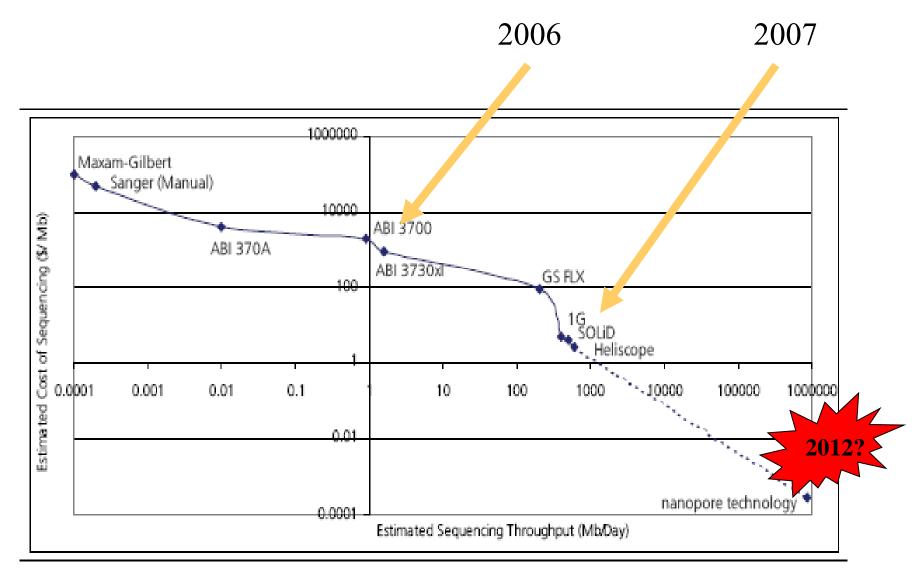
Copies	CALIBRANT	Grouping	pp code	Target	Grouping	pp code	Target	CALIBRANT	Copies
150	BWMPLXCAL: BA CAL		BCT352	Bacillus anthracis		BCT1083	Ricksettia prowazekii	BWMPLXCAL: RICK CAL	150
		A1	BCT2339	Yersinia pestis	A7		Vibrio cholera		
			BCT1076	Clostridium botulinum					
			DOTOES	Desillus enthresis					
150	BWMPLXCAL: FT CAL	B1	BCT355 BCT2328	Bacillus anthracis Francisella tularensis	B7	BCT358	Yersinia pestis/E. coli C	BWMPLXCAL	150
		Ы			D/	BCT1071	Burkholderia mallei	DWWINPLACAL	150
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						DOTTOT	Durkholuena mallel		
			BCT2381	Bacillus anthracis-pX01					
150	BWMPLXCAL: COX CAL	C1	BCT1079	Coxiella burnetii	C7	BCT1080	Coxiella burnetii		
			BCT1084	Ricksettia prowazekii		BCT1075	Clostridium botulinum	CBOTCAL: CB CAL	150
450		54	DOTAAA	Drugelle melieteresie	D7	DOTO270	Bacillus anthracis-	Calibrant_Bacillus_anthrac	450
150	BWMPLXCAL: BRUC CAL	D1	BCT1111 BCT1105	Brucella melintensis Shigella Flexneri	D7	BCT2379	pX02	is – –	150
			BCTTI05	Shiyella Flexhen					
150	BWMPLXCAL: BURK CAL		BCT1070	Burkholderia mallei					-
		E1	BCT2323	Vibrio cholera	E7	BCT1112	Brucella melintensis	Calibrant BACCLADES1	150
		1	BCT1106	Shigella Flexneri				_	
150		-	BCT2332	Francisella tularensis		DOTOOD			150
150	BWMPLXCAL: VC CAL	F1	BCT2927	Vibrio cholera	F7	BCT2337	Yersinia pestis	Calibrant_BACCLADES1	150
			BCT2326	Yersinia pestis					
	CALIBRANT_POX-							CALIBRANT_FILO_PCR_	
150	PCR BLUNT V002	G1	VIR985	Orthopoxvirus	G7	VIR858	Filovirus	BLUNT V004	300
			VIR966	Alphavirus		VIR2798	Influenza		
								CALIBRANT_ALPHA-	
300	CALIBRANT_FLUA_mix_1.0	H1	VIR1266	Influenza	H7	VIR2499	Alphavirus	PVIR01PLUS	300
			VIR979	Orthopoxvirus		VIR853	Filovirus		

SNP Assay

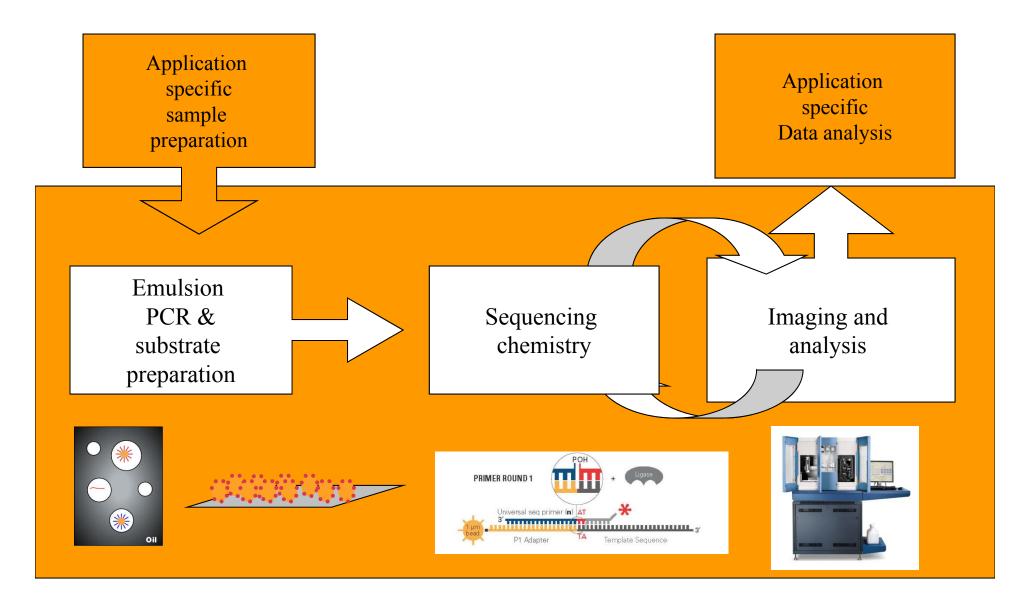
Multiplex	Locus	Primer Pair		
	rs13182883	4678		
	rs1058083	4932		
А	rs1821380	4548		
	rs214955	4564		
	rs7704770	4574		
	rs7205345	4567		
	rs987640	4561		
В	rs985492	4577		
	rs1478829	4559		
	rs10488710	4538		
	rs6444724	4553		
	rs1554472	4570		
С	rs279844	4539		
	rs1410059	4566		
	rs2073383	4698		
	rs1523537	4680		
	rs13134862	4565		
D	rs560681	4618		
	rs9951171	4683		
	rs6811238	5189		
	rs445251	4546		
	rs2272998	4560		
E	rs6591147	4576		
	rs3780962	4563		
	rs321198	4568		
	rs2503107	4572		
	rs1019029	4556		
F	rs1358856	4547		
	rs12997453	5570		
	rs740598	4545		
	rs7229946	4550		
	rs315791	4627		
G	rs2567608	4682		
	rs447818	4937		
	rs1109037	4634		
	rs338882	4958		
	rs13218440	4687		
н	rs1336071	4554		
	rs10092491	4544		
	rs7520386	4713		

Next Generation Sequencing Platforms

Roche 454


Applied Biosystems SOLiD

Ion Torrent

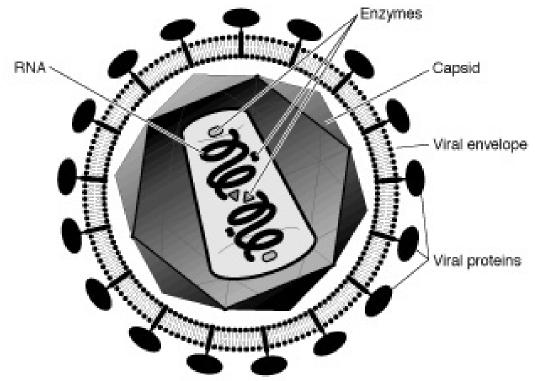


Illumina Genome Analyzer

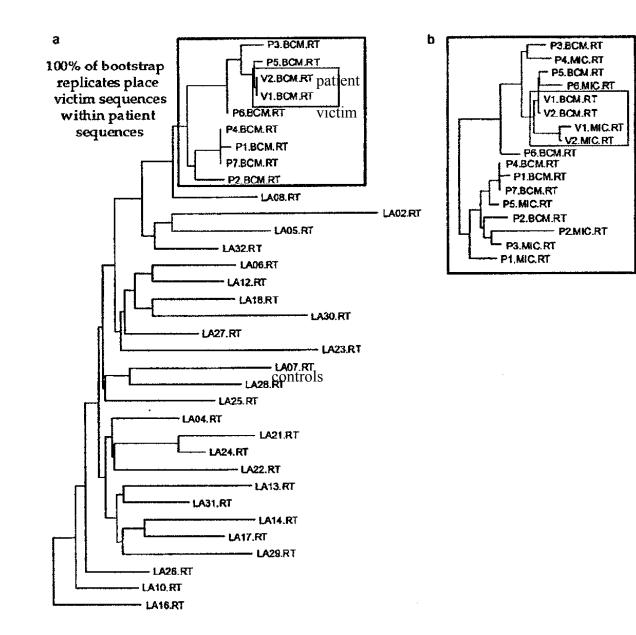
Source: Company reports and UBS estimates; Washington University of St. Louis

SOLiDTM Workflow

B. anthracis SNPs


(ambiguities with allelic asymmetry filtered)

	A0032	0324	A0377	A2012
Chromosome				
SNPs	324	331	434	0
ambiguities	11*	7*	13*	1
total calls	335	338	447	1
pXO1				
SNPs	18	23	26	0
ambiguities	0	1	0	0
total calls	18	24	26	0
pXO2				
SNPs	10	8	11	0
ambiguities	0	0	0	0
total calls	10	8	11	0


* Four shared ambiguities in imperfect repeat region

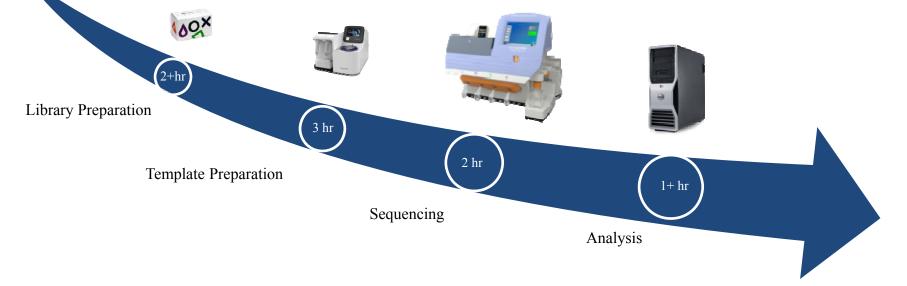
Use of strain identification in sexual assault and child molestation

Molecular Evidence of HIV-1 Transmission in Criminal Cases

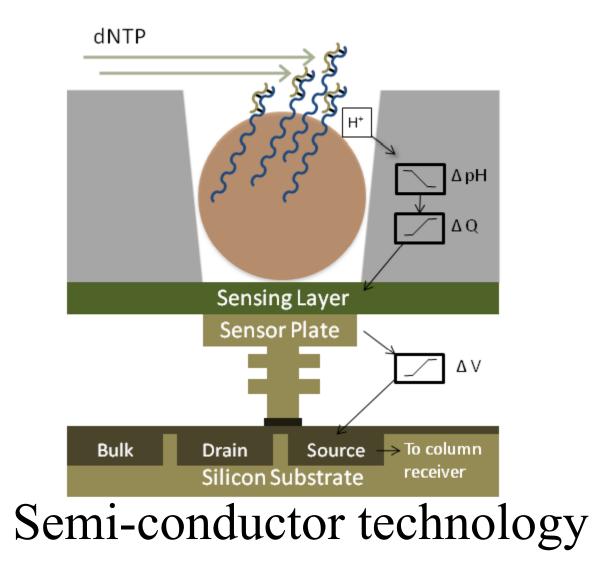
Structure of Human Immunodeficiency Virus (HIV)

RT region

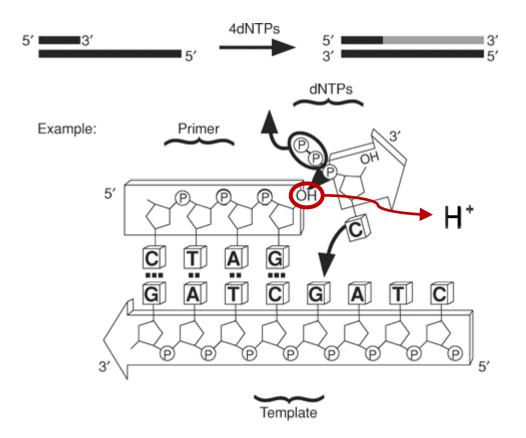
Victim sequences embedded in patient sequences Dr. Schmidt was found guilty of second degree attempted murder and is serving a 50 year sentence


- The admissibility of the conclusion that the HIV samples were closely related was challenged on appeal
- Use of DNA evidence is well-established in Louisiana, but its use to establish similarities between viral infections was without precedent (Note: no statistical strength)
- The appeal was rejected by the Louisiana State Supreme Court in 2000
- The case was then appealed to the United States Supreme Court, and the appeal was rejected March, 2002

Ion Torrent


Single Day Workflow

- ~2 hour sequencing runs enabled by PostLight[™] Sequencing
- Innovative automated template preparation for PGM sequencer matches the speed of semiconductor sequencing
- Complete end-to-end workflow within 1 day or multiple samples per day



Schematic cross-section of a single well of an Ion Torrent sequencing chip

Chemistry

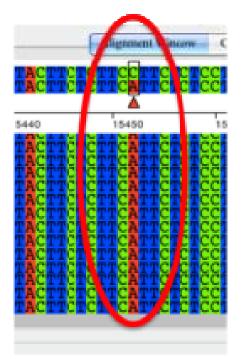
Eliminate source of sequencing errors:

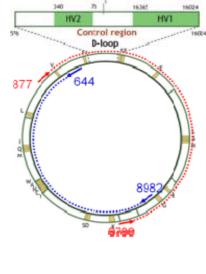
- Modified bases
- Fluorescent bases
- Laser detection
- Enzymatic amplification cascades

Eliminate source of read length limitations:

- Unnatural bases
- Faulty synthesis
- Slow cycle time

Delivers highly uniform genome coverage


- In principle similar to pyrosequencing
- But simpler


Human Mitochondrial Sequencing

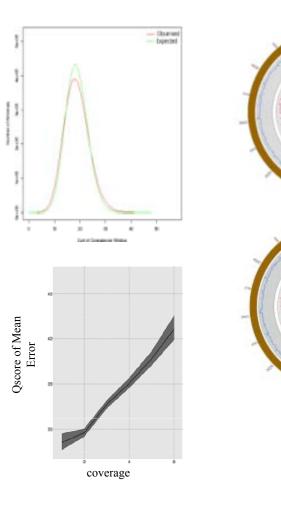
•Deep sequence for heteroplasmy detection (>1000x coverage on Ion 314)

•Ability to do 16 samples per run with barcoding

•Accurate variant calling, especially in hypervariable regions of mitochondria

Mutation detected on position 15450 Prof/. Stefan Schuster Penn. State University

Amplify mtDNA via two overlapping long range PCR Fragment via mechanical or enzymatic shearing


Microbial Sequencing

•Highly uniform coverage (equivalent to predicted) allows more efficient sequencing

•Up to 99.999% consensus accuracy

•100 bp runs today (200 bp late 2011)

7X (314)

Coverage

G + C content 30X (316)

European *E. coli* Outbreak Strain Identified using Ion PGM[™] in 3 days

Monday May 30*	Library preparation	O104:H4 and HUSC41 samples (reference) strain libraries prepared	E coli LB226692 draft assembly
Tuesday May 31	Sequencing runs	0104:H4 amplified and sequenced 2 x 2 runs (Ion 314)	E coli 55989 complete genome
Wednesday June 01	Sequencing runs	0104:H4 sequenced 3 x 2 runs (Ion 314)	X_144_20000 generation
Thursday June 02	Assembly	Draft Genome identified, Assembled, Submitted and Released from NCBI	A% C% G% T% Sum Num Mean Median N50 Max
Friday June 03	Assay Design	TaqMan Assays Designed	Contig Length (bp)Contigs Length (bp)Contig Length (bp)Contig Length (bp)Contig Length (bp)Contig Length (bp)Contig Length (bp)Contig Length (bp)Contig Length (bp)242525245,450,26436414,973762181,540475,662

*May 22 CEDC reports significant increase in patients with hemolytic uremic syndrome

Life Technologies Assembly

"The biggest advantage [of the PGM] from my point of view as a public health official is that it's speedy, and speed is what is needed at the moment,"

Prof. Dr. Med Dag Harmen, University Hospital Muenster

"[The PGM] takes the shortest time to generate genomic data." Junjie Qin, BGI

ACKNOWLEDGMENTS

#

- Angela van Daal
- Life Technologies
- Promega Corporation
- Abbott/Ibis
- Illumina