Toxicology 101

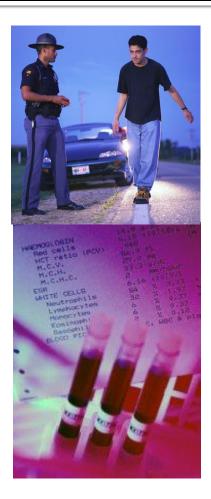
Dr. Sarah Kerrigan Director, Forensic Science Program, SHSU Laboratory Director, SHSU Regional Crime Lab

Texas Forensic Science Seminar The Texas Criminal Justice Integrity Unit Austin, TX October 7-8, 2010

Overview

- What is forensic toxicology?
- Sub-disciplines
- Role of the toxicologist
- Laboratory methodology
- Interpretation
- Challenges

Toothbrush Defense

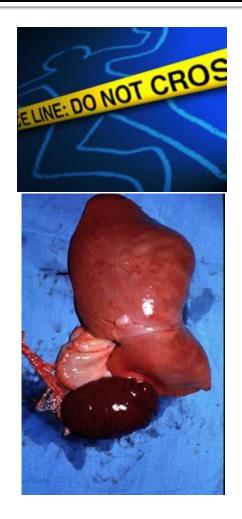


Forensic Toxicology

Drugs and Poisons in Biological Samples

Three sub-disciplines:

- Human performance toxicology
- Postmortem forensic toxicology
- Forensic urine drug testing



Forensic Toxicology

Drugs and Poisons in Biological Samples

Three sub-disciplines:

Human performance toxicology
 Postmortem forensic toxicology
 Forensic urine drug testing

Forensic Toxicology

Drugs and Poisons in Biological Samples

Three sub-disciplines:

Human performance toxicology
Postmortem forensic toxicology
Forensic urine drug testing

What is Human Performance Toxicology?

- "Behavioral toxicology"
- How drugs influence human performance or behavior
- Improve performance (e.g. athletics)
- Decrease performance (e.g. criminal context)
 - Impaired driving
 - Drug-facilitated sexual assault
 - Other criminal acts while under the influence of a drug
 - (Death investigation)

Role of the Toxicologist

- Test
- Interpret
- Testify

- B.S. Chemistry, biology or related science
- M.S. or Ph.D. in Chemistry, FS or related science

Toxicology Testing

Alcohol

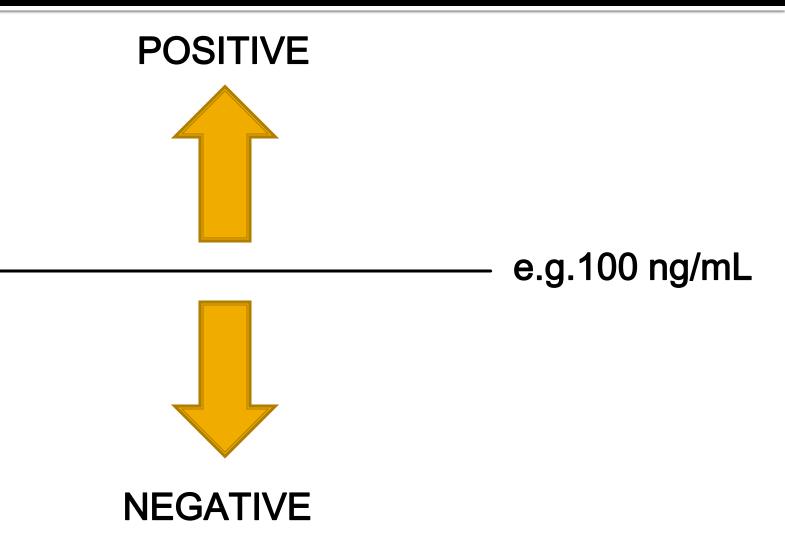
- Gas chromatography-Flame Ionization
 Detection (GC-FID)
- Headspace GC
- Standardized
 methodology
- Well established and accepted

Drugs

- Two-step process
 - Screening (often "immunoassay")
 - Confirmation e.g. GC-MS
- Many procedures (many drugs)
- Well established and accepted

Drug Testing – Step I Presumptive Screen

- Antibody-based test (immunoassay)
- Defined "cutoffs"
- Know what these are
- Know what drugs are included in the screen
- Limited scope
- Used to determine what additional tests are necessary
- Rapid (hours)
- False positives & negatives possible
- Not forensically defensible without confirmation



Cutoff Concentration

e.g.100 ng/mL

Cutoff Concentration

13

Drug Testing – Part II Confirmation

- Gas chromatography-mass spectrometry (GC-MS) or similar
- Sensitive and specific
- Separate and identify
- Used for qualitative and quantitative testing
- Forensically defensible
- Typically report drugs if they are detectable and/or meet specific criteria – rather than an administrative cutoff
- Broad scope (hundreds of drugs)
- Requires separation of the drug from the matrix (blood)
- Labor intensive
- Expensive

Analytical Issues

- Methodology widely accepted
- Extensive scientific literature
- Results may vary between laboratories
 - Sample storage/degradation (biological matrix)
 - Scope of testing
 - Cutoffs vary between labs
 - Equipment/resources in the laboratory
 - Limits of detection/analytical capabilities
 - Policies/procedures regarding testing protocols
 - Non reportable data

Why does it take so long?

- Complex biological matrices
- Isolate the substances prior to analysis
- Purification process (extraction) is labor intensive
- Specific procedures for <u>isolation</u> each drug or class of drug
- Specific procedures for <u>analysis</u> each drug or class of drug
- Results subject to technical/administrative review

Impaired Driving

Alcohol

- Notably the <u>most</u> <u>prevalent</u> drug in impaired driving
- Effects, properties and pharmacokinetics are <u>well</u> <u>understood</u>
- Produce <u>predictable</u> <u>effects</u> in a <u>dose-</u> <u>dependent manner</u>
- Per-se approach

Drugs

- Prevalence not well understood (likely <u>underestimated</u>)
- <u>Many drugs</u> involved (hundreds)
- Scientific literature less mature
- Effects are <u>less</u> predictable
- May require proof of impairment

Toxicology Challenges and Misconceptions in Impaired Driving

- What level of [DRUG] is equivalent to a .o8 BAC?
- Any level of [DRUG] indicates impairment
- Quantitative vs. Qualitative toxicology reports (Do you need a NUMBER?)
- Can we interpret based upon lab report alone?
- Polypharmacy issues multiple drug/alcohol combinations
- Training needs
 - New methods for new drugs
 - Interpretive testimony
- Why is the report NEGATIVE?

Are Drugs Important?

- 10 million people reported driving after illicit drug use (SAMHSA, 2007)
- Drugs (other than alcohol) found in 17.8% fatally injured drivers (NHTSA)
- Drugs detected in 10 to 22% of drivers involved in crashes, often in combination with alcohol
- Drugs detected in up to 40% of injured drivers requiring medical treatment
- Drug use among drivers arrested for motor vehicle offenses is 15-50%
- Driving under the influence of drugs (DUID) is highly significant

SAMHSA – Substance Abuse and Mental Health Services Administration NHTSA – National Highway Traffic Safety Administration

Impaired Driving Constants

- DUID inherently more complex (scientifically and legally) than alcohol-related DWI
- Fewer studies than for alcohol
- Requires toxicologists with specialized training to interpret effects
- Drug impairment is determined on a case-by-case basis
- DUID represents a significant number of DWIs
- More difficult to prosecute than alcohol-impaired driving
- Under-reported, under-recognized
- Drugs are constant factor in traffic crashes
- Full impact not yet known

Impaired Driving Variables

- Statutory schemes vary state to state:
- May require the drug to render a driver *incapable of driving safely*
- May require the drug to impair a driver's ability to operate a vehicle safely or require a driver to be "under the influence", "impaired" or otherwise affected by an intoxicating drug
- "Per-se" or "zero tolerance" drug laws which make it a criminal offense to have a specified drug or metabolite in the body while operating a motor vehicle
- Laboratory policies and procedures vary
- Particularly SOPs, quantitative vs. qualitative services, analytic capability/instrumentation, resources, training
- All these SCIENTIFIC and LEGAL <u>variables</u> may influence how we <u>interpret</u> a case

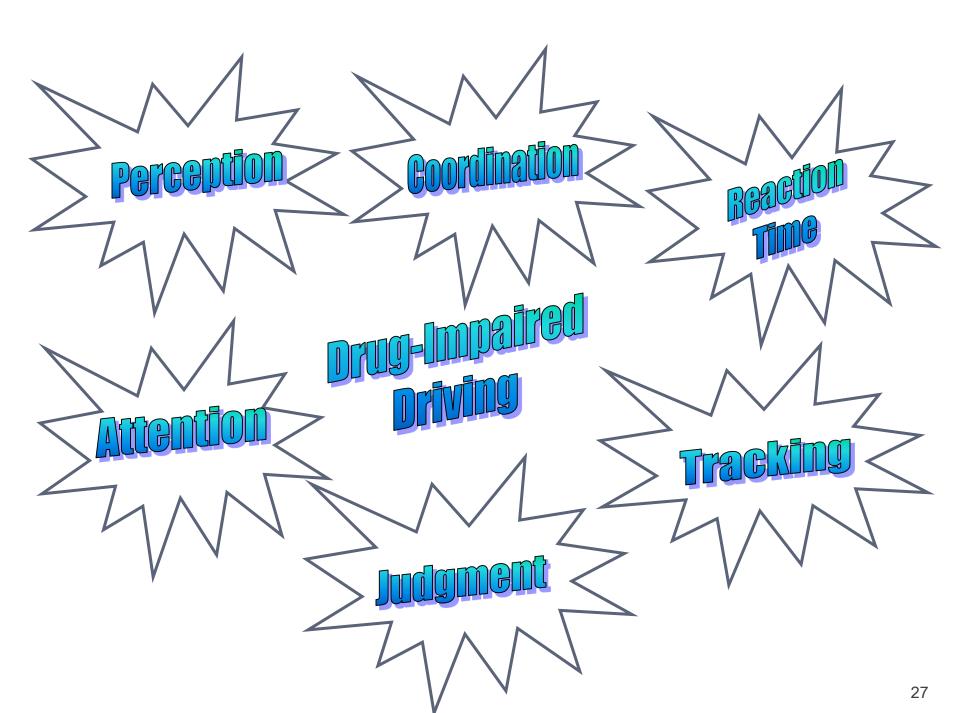
Drugs Used

Drug Impaired Driving

- Drugs most commonly associated with impaired driving:
- Cannabinoids/Marijuana
- CNS Depressants Sedative-hypnotics, muscle relaxants, antidepressants, antihistamines, anticonvulsants, antipsychotics, anxiolytics
- CNS Stimulants
 Cocaine, methamphetamine
- Narcotic Analgesics Morphine, codeine, hydrocodone (Vicodin), oxycodone (Oxycontin), methadone

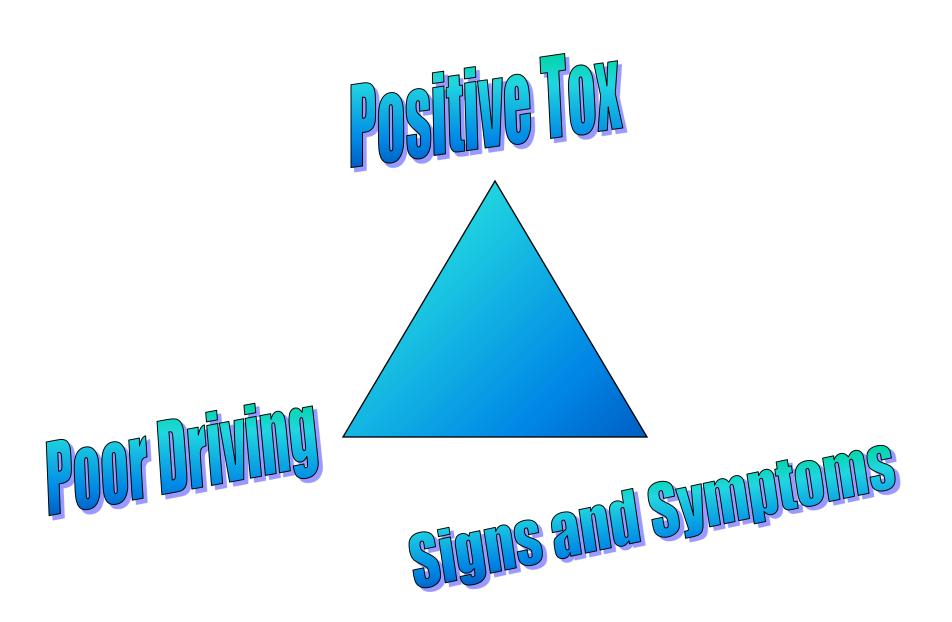
Top Ten List

- **1.** THC & metabolite (Carboxy-THC)
- 2. Cocaine and metabolite (Benzoylecgonine)
- 3. Methamphetamine
- 4. Diazepam and metabolite (Nordiazepam)
- 5. Carisoprodol and metabolite (Meprobamate)
- 6. Hydrocodone
- 7. Morphine
- 8. Alprazolam
- 9. Zolpidem
- 10. Methadone


Which Drugs Can Impair Driving?

- Any drug that can affect the brain's perception, collection, processing, storage or critical evaluation processes
- Any drug that affects communication of the brain's commands to muscles or organ systems that execute them

For the most part, drugs that affect the central nervous system (CNS)


Drug Toxicology Challenges

- More complex
- Often in combination with other drugs and/or alcohol (additive or synergistic effects)
- Scientific literature is complex
- May require a toxicologist to interpret the results and provide an opinion
- These complex issues must be explained to the court using every day language

Is this driver impaired?

- Impairment is based on knowledge of the drug(s), intended effects, side effects and toxic effects
- The toxicologist can rarely give an opinion based upon the drug report alone
- The opinion may depend on the context of the case and information gathered by the investigator (situation, environment, observations, performance on field sobriety tests, other evaluations, driving pattern etc.)

Drug Interpretation Issues

- Multiple drug use
- Tolerance (chronic vs. naïve)
- Health
- Metabolism
- Individual sensitivity/response
- Withdrawal
- Put in context of case e.g. environmental factors
- Other factors (distraction, injuries, disease etc)

Signs and Symptoms: Depressants

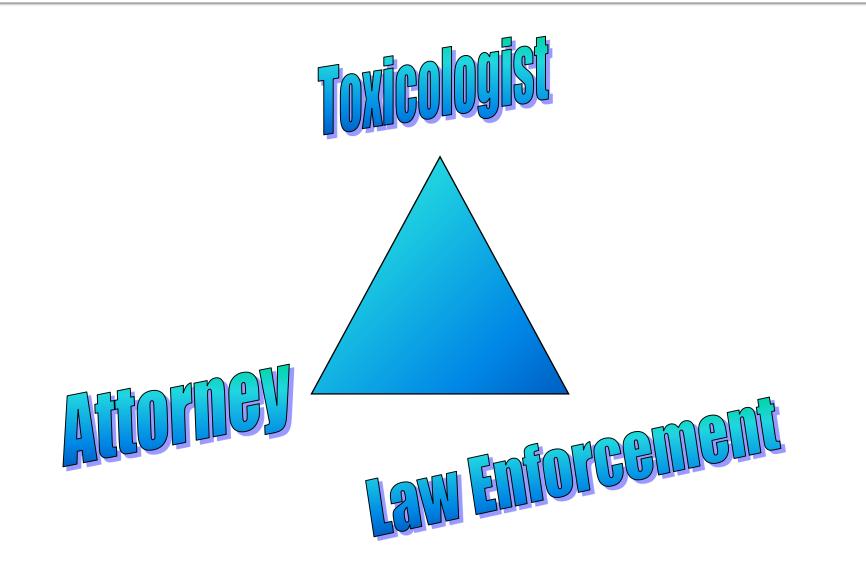
- Confusion
- Poor divided attention
- Sedation
- Droopy eyelids
- Slowed reaction times
- Memory effects
- HGN

- Poor balance
- Poor coordination
- Unsteadiness
- Slurred speech
- Disorientation
- Low b.p.
- Low pulse

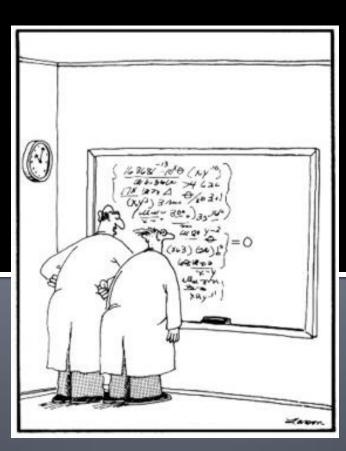
"Once more, only this time touch your nose."

Drug Evaluation and Classification

- Systematic, standardized, post-arrest procedure for Drug Evaluation and Classification (DEC)
- Performed by a trained and certified police officer
- Formally and scientifically validated for drugs
- DEC Certified officers are Drug Recognition Experts (DREs)
- 12-step evaluation of behavior, appearance, psychophysical tests, vital signs, eye measurements
- DRE documents drug signs and symptoms provides opinion as to which class of drug is responsible for impairment. These can be interpreted by a Toxicologist in a DUID case
- DRE provides the court with additional information

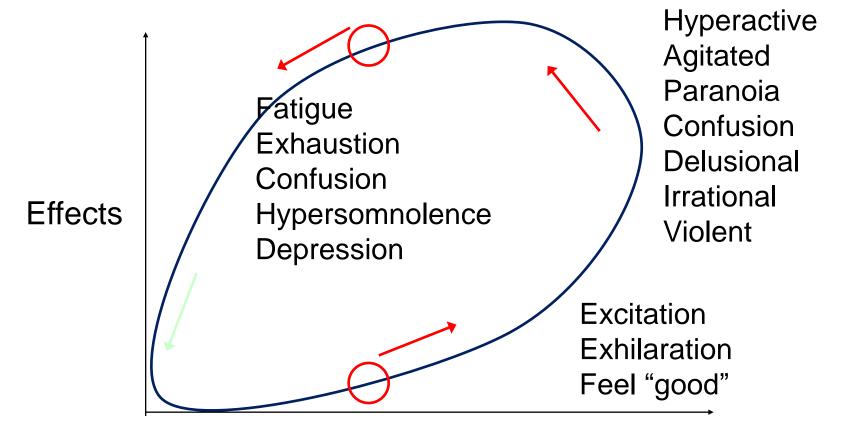


Driving Behavior - Depressants -


- Weaving
- Extreme lane of travel
- Striking other vehicles
- Striking fixed objects
- Slow speed
- Hit and run
- Wrong way driving

Interpretation Requires Information From Many Sources:

What does the number actually mean???



Toxicology Blood Ranges

Drug	Concentration Range
Carboxy-THC	6 – 282 ng/mL
THC	2 – 23 ng/mL
BE	0.01 – 10 mg/L
Cocaine	0.005 – 0.64 mg/L
Methamphetamine	0.05 – 14 mg/L
Amphetamine	0.01 – 0.19 mg/L
Diazepam	0.03 – 5 mg/L
Nordiazepam	0.03 – 3.2 mg/L

Definition of Statistics: *The science of producing unreliable facts from reliable figures*

Example: Methamphetamine High vs Low

Concentration

Use of Quantitative Results

- Provides valuable information from an interpretive standpoint
- Must be used responsibly
- Should not be interpreted in isolation
- Toxicologist should be prepared to discuss interpretive limitations

The Scientific Literature

- Empirical Considerations
- Epidemiological Studies
- Case Reports
- Laboratory Studies
- Simulator Studies
- On-the-road driving studies

Limitations

- Often not real-world doses
- Often not real driving
- Less complex tasks
- Small populations
- Drug combinations

Hot Tamale Defense

- Vehicle swerves into oncoming traffic
- Speech slurred, watery eyes, HGN present
- Unsteady on his feet, staggering
- Falls over during OLS, WAT
- Stated that he swerved "To pick up a tamale"
- BAC 0.00%
- Toxicology: Morphine 0.05 mg/L, Meprobamate 20 mg/L Carisoprodol 2 mg/L Oxycodone 0.13 mg/L Hydrocodone 0.06 mg/L Diazepam 0.3 mg/L Nordiazepam 0.3 mg/L Gabapentin, present.

Recommendations for Toxicological Investigation of Drug Impaired Driving

J Forenzic Sci, September 2007, Vol. 52, No. 5 doi: 10.1111/j.1556-4029.2007.00516.x Available online at: www.blackwell-synergy.com

Laurel J. Farrell,¹ B.A.; Sarah Kerrigan,² Ph.D.; and Barry K. Logan,³ Ph.D.

Recommendations for Toxicological Investigation of Drug Impaired Driving*

ABSTRACT: Investigation of a suspected alcohol or drug impaired driving (DUD) case ideally contains several key elements, including a trained ABSTRALT: In resignor of a superior location or drug impared drong (UUB) care idealy contains several key dementis, induing a famol-officer dearmenting observations of droin gaal subject bakwior, and tolection of a biological spontian for comprehensive toxicology ratios. There is correctly no contrast standard of practice among formatic encoded particular several and which drops should be toxical set of the droin gaal subject costs of the droin of the droin gaal standard of practice among formatic encodes which drops should be tracted for and at what analytical costs. The values of the apportance means blocknown used o seven and omfirm the presence of drogs, and that mere accusted data impartant were consenting or analysis and appropriate memory were noted to scene and contain an presence of angle and an area scenare data, were collected on the extent of logic an emig drivers. A servey of link of Sara laboration is actively involving analytical support to the Daug Brahation and Classification Program identified mengiana, benocharging, consine, prescription and likit explains, made relations, amplements, CNN depressent, and store adult and a hypotolic, as being the most frequently encountered drugs in these cases. This managing protein recommendation as to what specific members of these darg classes should at a minimum be total for in the investigation of supported DUD one. Additionally we include incommendations for analysisal confits for sciencing and confirmation of drugs in block and man. Adopting the end of the most common drugs would be detected, that alarmonies could compare patienting and indicates between pieciedations, and that aggregate national statistics on abshed and drug use in drivers involved in fatal injury officients were representative of the team and of the drug team of the drug team of the drug team of the drug team.

KEYWORDS: forensic science, drug, immaired, immaired performance, automobile driving, driving under the influence of drug-

Toxicologists in the United States have been discussible the need their analytical gractices. At a follow up meeting in October 2005. for hetter standardization in the scope and analytical cutoffs used in survey results were presented and there was discussion of developdrug testing performed in drug impaired driving investigations. In May 2004, a group representing traicologists, Drug Recognition Experts (DREs) and prosecuting attorneys active in the area of driving under the influence of drugs (DUID) was convened under the auspices of the National Safety Council's Committee on Alcohol and Other Drugs (COAD), and its subcommittee on Drugs: Phatmacology and Toxicology. The panel was charged with identifying problems with the curtent system of prosecuting impaired driving cases, from the point of detection through adjudication. The discussions were wide ranging, however the lack of consistency of practice among laboratories was one of the major limitations identified. Tasks were assigned to the major stakeholder groups attending. The Joint Drugs and Driving Committee of the Society of Forensic Toxicologists (SOFT) and the American Academy of Forensic Sciences (AAFS) and the COAD were assigned responsibility for surveying practices among laboratories performing toxicology in support of state DRE programs and more generally for toxic dogical investigations of drug impaired driving cases (1).

Laboratories engaged in performing toxicological testing in support of DRE programs were identified and surveyed with respect to

Colorado Bureau of Investigation, 690 Kipling St., Suite 4000, Denver,

College of Criminal Justice, Sam Houston State University, Hunsville, TX 77341.

Washington State Patrol, Formatic Laboratory Services Burnau, 2203 Air-

part Way S., Saite 300, Seattle, WA 98134. *Presented at the 58th Annual Meeting of the American Academy of For-ensic Sciences, Seattle, WA, February 2006. The opinions expressed in this article are those of the authors and do not represent an official position of any of the professional organizations or government agencies identified in the article.

Received 7 Nov. 2006; and in revised form 30 Mar. 2007; accepted 8 April 2007: published

© 2007 American Academy of Forensic Sciences

ment of recommendations for laboratories performing this testing to follow in order to ensure the greatest chance of detecting drugs most likely to be encountered in blood and urine in impaired driving cases. Subsequently the authors of this manuscript (LJF, SK, and BKL) developed the following recommendations for a minimum menu of drugs which should be tested for based on drugs most frequenty encountered in DUID investigations (2-5), together with recommended cutoff targets for screening and confirmation in blood and urine, based on the availability of immunoassay screening technology and standard instrumentation available to most laboratories working in this field.

Survey of Current Practice

Cutent practice in toxic dogy laboratories supporting DRE programs was determined by a survey of all participating labs that could be identified. The survey included questions on scope and analytical cutoffs of services provided, as well as statistics on the fequency of drugs identified in DUID casework. The survey conducted in 2004-2005 was the third survey of this type with prior surveys having heen conducted in 1996 and 1999. Completed surveys were received from 42 laboratories in 24 states. This survey response represented 71% of identified laboratories and 66% of the states with active DRE Programs at the time of the survey. Respondents represented city, county, state, and privately funded laboratories serving wide ranging populations (100,000 to >5,000,000). The survey results disclosed significant variability hetween laboratories in terms of scope and analytical cutoffs used in testing performed in DUID cases.

One-hundred percent of survey respondents used an immunoassay to perform presumptive drug screening on blood or urine specimens. Forty-one percent of the responding laboratories added

1

Additional Resources

- Drug Toxicology for Prosecutors American Prosecutors Research Institute, 2004. <u>http://www.ndaa-</u> <u>apri.org/pdf/drug_toxicology_for_prosecut</u> <u>ors_04.pdf</u>
- Drugs and Human Performance Fact Sheets, DOT HS 809 725, National Highway and Traffic Safety Administration, 2004 <u>http://www.nhtsa.gov/people/injury/researc</u> <u>h/job185drugs/index.htm</u>

Page Basing Posts

Dr. Sarah Kerrigan Email: <u>sarah.kerrigan@shsu.edu</u> Forensic Science Program Director Sam Houston State University 1003 Bowers Blvd Huntsville, TX 77341

Laboratory Director SHSU Regional Crime Laboratory 8301 New Trails Dr. The Woodlands, TX 77381 Tel: 936-294-2501